
Appendix D Resource Variability Parameters

There are three basic resource variability parameters for renewables with variable resources
(i.e. wind and solar) that are calculated for each period in ReEDS before the linear program
optimization is conducted for that period. These include capacity value, operating reserve,
and surplus. For each, a marginal value is calculated, which applies to new installations in
the period, and an ‘‘old’’ value is calculated, which applies to all the capacity built in previous
periods. This section describes the statistical assumptions and methods used to calculate these
values.

These variable-resource parameters are calculated for a source from which the variable-
resource renewable energy (VRRE) is generated and a sink to which the energy is supplied. The
source is always a supply region. The user must specify the regional level for the sink. It can
be a balancing authority (BA), a regional transmission organization (RTO), a NERC region, or
an entire interconnect. The ‘‘old’’ values for these variable-resource parameters are calculated
for each sink but not for each source since the old value is a single value for all the variable
resource supplied to the sink.

D.1 Data inputs for the calculation of resource variability parameters

The inputs required for calculating the resource variability parameters describe the probability
distributions associated with loads, conventional generator availability, and VRRE generation.
For each, an expected value and standard deviation are calculated.

For loads the expected value, µL , is the same as the values used in the ‘‘LOAD_PCA’’ con-
straint. The standard deviation of the load, σL , is found from the load-duration curve of the
sink region.

For conventional generator availability, the expected value is the nameplate capacity times
1 minus the forced outage rate.

µC =
∑
q

CONVCAPq,r · (1 − foq)

Variance of conventional generator availability is calculated thus:

σ2
C =

∑
q

numplantsq,r · plantsize
2
q · foq · (1 − foq)

where
plantsizeq is the input typical size of a generator of type q

numplantsq,reg = CONVCAPq,r/plantsizeq

The probability distribution associated with conventional generator availability is compli-
cated by the fact that there are can be many conventional generators and each one’s availabil-
ity is a binomial random variable with probability (1 − foq) of being one. We largely avoid this
complication by first combining the random variables for conventional generator availability, C,
with loads, L, in the form of a random variable X where:

X = C − L

The expected value of X, µX , is the sum of the expected values of the other two random variables

µX = µC − µL

and, since C and L are statistically independent:
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σ2
X = σ2

C + σ2
L

σX =

√
σ2
C + σ2

L

where σ denotes standard deviation and σ2 is the variance.

Future improvements in the performance of wind and solar technologies are captured in
ReEDS through increased capacity factors. These improved capacity factors translate directly
into improvements in the mean of a VRRE plant’s generation output. ReEDS also estimates a
new standard deviation for a VRRE plant based on regressions that estimate the new standard
deviation as a function of the old standard deviation and the new capacity factor.

In the variable-resource parameters described below the input distributions must represent
the generation from all VRRE plants contributing to a sink region, not simply a single plant.
The mean value µR is easily calculated as the sum of the mean values of the output of the
individual contributing VRRE plants. The standard deviation is complicated by the fact that
the outputs of the VRRE plants are correlated with one another. For each ReEDS time slice, we
have used the WSIS data to develop a correlation matrix (Pkl ) of the Pearson correlation between
each possible pair k,l of region, class, and VRRE, e.g. a correlation coefficient represents the
power output between class 5 wind in region 3 and class 2 PV generation in region 14. This
Pkl matrix is an input to ReEDS. (Currently, correlation coefficients have only been calculated
for wind to wind correlations, however, we are in the process of calculating wind-load, csp-csp,
wind-csp, and csp-load correlations.) The variance of the VRRE arriving at a sink region r (σ2

Rr
)

is then calculated from this correlation matrix Pkl through the standard statistical formula:

σ2
Rr =

∑
k∈Rr

∑
l∈Rr

Pkl · σk · σl

where
Rr is the set of VRRE’s contributing to region r

Armed with the mean and standard deviation of all VRRE contributing to a region r, we
can now calculate the variable-resource parameters - capacity value, operating reserve, and
surplus. In the current version of ReEDS, we assume all combined random variables to be
normally distributed, though the distribution for each individual random variable (e.g. C, L, Rr )
need not be normally distributed. For example, X is assumed to follow a normal distribution
defined by it’s mean, µX , and standard deviation, σX . The normal distribution approximation
improves in accord wtih the central limit theorem. We also have the capability of using other
probability distributions, e.g. Beta function.

D.2 Capacity Value

This is the capacity credit given to the VRRE contribution to meeting the reserve margin con-
straint in each sink region. It is a function of the amount and type of VRREs consumed in the
sink region, the dispersion of the VRRE plants contributing the energy, the electric load in the
sink region, the variability of the load and the amount and reliability of conventional capacity
contributing to the load in the sink region. Generally, as more VRREs are used by the sink
region, their capacity value decreases. And as more renewable energy from a particular source
is used, the marginal capacity value from that source decreases.

CVoldr: For the total VRRE generation that is to be consumed in sink region r, the capacity
credit, CVoldr , is the amount of load that can be added in every hour without changing the
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system reliability in sink region r, i.e. without changing the loss-of-load probability. This added
load is the effective load-carrying capability (ELCC) associated with the VRRE contributed to
the sink region.

To estimate CVoldr , we first equate the loss of load probabilities of the random variables:

U = C + Rr − L

V = C − (L − ∆L),

where C, Rr , and L are as defined above and ∆L is the ELCC for the VRRE in the system.
Assuming C, Rr , and L are statistically independent, the variances of U and V are given by:

σ2
U = σ2

C + σ2
Rr + σ2

L

σ2
V = σ2

C + σ2
L−∆L

.

The loss of load probability with VRRE in the system is the probability that U is less than
zero or P(U < 0). Define U ′ = (U − µU )/σU as a standard normal variable. The probability that
U is less than zero is the probability that U ′ is less than −µU/σU or N(−µU/σU ), where N is the
cumulative standard normal distirbution function. Similarly, P(V < 0) = N(−µV/σV ) and the
ELCC or ∆L can be estimated by equating P(U < 0) = P(V < 0). With these definitions, CVoldr
is simply ∆L/TRr where TRr is the total installed VRRE nameplate capacity devoted to region r.
The following shows the derivation for an expression for CVoldr .

P(V < 0) = P(U < 0)
N(−µV/σV ) = N(−µU/σU )

µV/σV = µU/σU

(µC − µL + µ∆L )/σV = µU/σU

µ∆L = µL − µC + µU · σV/σU

∆L = µL − µC + µU · σV/σU ,

where in the last equation we set ∆L = µ∆L . Since µV is a function of σ2
L−∆L

, which in turn
depends on ∆L itself, the above equation would be non-trivial to solve and would likely increase
the run-time significantly. Instead of solving exactly, we estimate σ2

L−∆L
based on the ELCC or

∆L of previous periods and use the result to find:

CVoldr = CFr − µU · (1 − σV/σU )/TRr ,

where CFr is the average capacity factor of the VRRE in the system and is defined by CFr =

µRr/TRr .

CVmarc,i,r is the marginal capacity value associated with the addition of class c VRRE
capacity in a source region i delivered to a sink region r. The calculation for CVmarc,i,r is very
similar to the one for CVoldr . CVmarc,i,r is calculated using the random variable U above and
the random variable

W = C + (Rr + δRr ,c,i) − (L + δL),

where δRr ,c,i is an incremental amount of class c VRRE from region i that can serve region r, and
δL is the effective load carrying capacity for this increment of VRRE. δL is calculated similarly
to the calculation for ∆L above:
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P(W < 0) = P(U < 0)
N(−µW/σW ) = N(−µU/σU )

µW/σW = µU/σU

(µC + µRr + µδRr ,c,i − µL + µδL )/σW = µU/σU

µδL = µC + µRr + µδRr ,c,i − µL − µU · σW/σU .

Finally, CVmarc,i,r is equal to δL/δRr ,c,i or equivalently,

CVmarc,i,r = CFc,i − (
σW
σU
− 1) · µU/δRr ,c,i .

D.3 Operating Reserve Requirement

Operating reserve includes spinning reserve, quick-start capability, and interruptible load that
can be dispatched to meet unanticipated changes in loads and/or power availability. There
is no standard approach for estimating the level of operating reserve required. Some NERC
regions assume that operating reserve must be at least as large as the largest single system
contingency, e.g. the failure of a nuclear power plant. Others have reasoned that a system
should have enough operating reserve to meet 7% of peak load (reduced if hydro is available).
We assume in ReEDS that the normal operating reserve (NORr,m ) required by a sink region r is
proportional to the load (Lr,m ) and conventional generation (Gr,m ) in the region.

VRREs can induce a need for additional operating reserve beyond the usual requirement.
ReEDS calculates the total operating reserves induced by all load, conventional generation, and
VRREs in the system (TORr,m ) and the operating reserves induced at the margin (ORmarr,m ) by
the addition of an increment of VRRE capacity.

TORr,m is the total operating reserve required in region r due to load, conventional gen-
eration, and all existing VRRE capacity contributing to sink region r (Rr ). By assuming that
the normal operating reserve is a 2-sigma reserve, we can estimate the sigma, σNORr,m , associ-
ated with the normal system operation (operating reserve required for load and conventional
generation) as:

NORr,m =
0.03 ·

(
Lr,m + Gr,m

)
2 · Lr,m

σNORr,m = NORr,m · (Lr,m − Rr )

Since the normal system issues that require the normal operating reserve occur indepen-
dently of the resource variability of VRREs, the variances of the two can be added to give the
variance of the total. The total operating reserve is then assumed to be twice the standard
deviation of the total.

TORr,m = 2 ·
√
σ2
NORr,m

+ σ2
Rr

where
σRr is assumed to be the standard variation of the output of all existing VRREs

contributing to sink region r.
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ORmarc,i,r is the marginal operating reserve requirement induced by the next MW of class
c VRRE installed in region i that contributes generation to sink region r. It is calculated as
the difference in the operating reserve required with an increment ∆Rc,i,r of additional VRRE
capacity, minus that required with only the existing VRRE with the difference divided by the
incremental VRRE capacity ∆Rc,i,r .

ORmarc,i,r,m =
2

∆Rc,i,r
·

(√
σ2
NORr,m

+ σ2
Rr+∆Rc,i,r

−

√
σ2
NORr,m

+ σ2
Rr

)
D.4 Surplus

At high levels of VRRE penetration, there are times when the VRRE generation exceeds that
which can be used in the system. This ‘‘surplus’’ VRRE generation must then be curtailed.
ReEDS calculates the fraction of VRRE generation from existing VRRE plants (Surplusoldr ) that
is surplus as well as the fraction of generation from new VRRE plants (Surplusmarr ) that is
surplus. ReEDS uses these surplus values to reduce the useful energy contributed by VRREs,
making them less cost-effective generators.

SurplusOldr is the expected fraction of generation from all the VRREs consumed in sink
region r that cannot be productively used, because the load is not large enough to absorb both
the VRRE generation and the must-run generation from existing conventional sources. This
situation occurs most frequently in the middle of the night when loads are small, base-load
conventional plants are running at their minimum levels, and the wind is blowing.

To calculate Surplusoldr , we use the random variable Y defined in the capacity value dis-
cussion above as the must-run conventional base-load generation M minus the load L plus the
VRRE generation R.

Y = M − L + R

Next, we define the surplus VRRE at any point in time, S, as

If Y < 0, S = 0
If Y > 0, S = Y

Then the expected surplus µS can be calculated from the density function of Y, g(y) as follows:

µS =

∫ ∞

−∞

sf (s)ds

µS =

∫ 0

−∞

sf (s)ds +

∫ ∞

0
sf (s)ds

µS = 0 +

∫ ∞

0
yg(y)dy

The density function of y can be found by convolving the density function of M − L together
with the density function of the VRRE. However, similar to that which was done in the calcula-
tion of the VRRE capacity value above, we approximate normal distributions for both M −L and
R. With the normal distribution assumption, the value of µS can be quickly found in ReEDS
with the analytical formula derived below:

Now if we assume, as we did in the CVmar and ORmar calculations above, that by the
central limit theorem, Y can be well approximated by a normal distribution, and we define the
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standard normal variable Y’ as Y ′ = (Y − µY )/σY , then

Y = Y ′ · σY + µY , and
dY = σYdY

′

Thus

µS =

∫ ∞

0
yg(y)dy

µS =

∫ ∞

−µY /σY

(y′σY + µY ) · g(y′σY + µY ) · σYdy′

µS =

∫ ∞

−µY /σY

σ2
Y · y

′ · g(y′σY + µY )dy′ +
∫ ∞

−µY /σY

µY · σY · g(y′σY + µY )dy′

Assuming Y is normally distributed, as stated above:

µS =

∫ ∞

−µY /σY

σ2
Y · y

′

(
1

σY
√

2π

)
exp

(
(−y′σY + µY − µy)2

2σ2
Y

)
dy′

+

∫ ∞

−µY /σY

µY · σY

(
1

σY
√

2π

)
exp

(
(−y′σY + µY − µy)2

2σ2
Y

)
dy′

µS =

∫ ∞

−µY /σY

σY · y′
√

2π
exp

(
−y′2

2

)
dy′ +

∫ ∞

−µY /σY

µY
√

2π
exp

(
−y′2

2

)
dy′

µS =
σY
√

2π
exp

(
−µ2

Y

2σ2
Y

)
+ µY

(
1 − N0,1(−µY/σY )

)
Where N0,1 is the standard normal distribution with mean 0 and standard deviation 1.

Then Surplusoldr is the difference between the expected surplus with VRRE, µS and the
expected surplus were there no VRRE generation consumed in sink region r, µSN , divided by
the total VRRE capacity contributing to sink region r, Rr . Or

Surplusoldr = (µS − µSN )/Rr

Normally µSN would be zero, as the conventional must-run units would not be constructed
in excess of the minimum load. However, with our assumption of a normal distribution for
Y, we do introduce some non-zero probability that Y could be positive even if there were no
VRREs, i.e. that the generation from must-run units could exceed load. Thus, it is important
to calculate µSN and to subtract it from µS to remove the bulk of the error introduced by the
normal distribution assumption. µSN is calculated in exactly the same way as µS, but with no
VRREs included.

Must-run conventional capacity is defined as existing available (i.e., not in a forced outage
state) coal and nuclear capacity in sink region r times a minimum turn-down fraction, MTDF .
The expected value of the must-run capacity of type q available at any given point in time, µMq ,
is thus:

µMq = CONVCAPq, r ∗ (1 − FOq) ∗MTDFq

where
CONVCAPq,r is the existing conventional capacity in sink region r of type q.

MTDFq is 0.45 for old (pre-2006) coal plants,

0.35 for new (post-2006) coal plants,

1.0 for nuclear plants.
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SurplusMarc,i,r is the fraction of generation from a small addition ∆Rc,i,r of class c VRRE
installed in supply region i destined for sink region r that cannot be productively used because
the load is not large enough to absorb both the VRRE generation and the must-run generation
from existing conventional sources. It is calculated as:

Surplusmarc,i,r = (µSR+∆Rc,i,r − µS)/∆Rc,i,r

Where µSR+∆Rc,i,r is calculated in exactly the same way as µS, but with ∆Rc,i,r MW of VRRE added
in region i.
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